Kerogen's nanostructure determines oil and gas reservoir capacity

The petroleum and natural gas that power engines and heat homes are extracted from the complex networks of nooks and crannies that permeate kerogen — a waxy organic mishmash that forms within sedimentary rocks as algae, terrestrial plants and other organic matter is compacted and heated over geologic time. In a new study, scientists have taken the closest look yet at kerogen’s internal pore structure, and the resulting images are helping scientists understand why some oil and gas reservoirs are more productive than others.

Full content for EARTH is available to subscribers. If you would like to gain access to the full version of this article, as well as all EARTH content, please subscribe today.

If you are connecting using a Library (IP-based) Subscription, please access full issues of the magazine through our Library Access portal.

Mary Caperton Morton

Mary Caperton Morton

Morton (https://theblondecoyote.com/) is a freelance science and travel writer based in Big Sky, Mont., and an EARTH roving correspondent.  

Thursday, March 14, 2019 - 06:00

Did you know ...

The digital edition of EARTH Magazine is a free subscription for members of AGI's Member Societies.  Find out more!

EARTH only uses professional science journalists and scientists to author our content?  In this era of fake news and click-bait, EARTH offers factual and researched journalism. But EARTH is a non-profit magazine, and at least 10 times more people read EARTH than pay for it. As advertising revenues across the media decline, we need your help to ensure that we can continue bringing you the reliable and well-written coverage of earth science you know and love. Our goal is not only to inform our readers, but to inform decision makers across the economic and political spectrum about the science of our planet. So, we need your help. By becoming a subscriber or making a tax-deductible contribution to support EARTH, you can fund our writers and help make sure the world knows about our planet.

Make a contribution

Subscribe