Twitter icon
Facebook icon
RSS icon
YouTube icon

A pair of moons with underground oceans

Interactions between deep ocean water and hot rock on Saturn’s moon Enceladus are thought to result in hydrothermal plumes that erupt through the moon’s icy crust. Credit: NASA/JPL-Caltech. Interactions between deep ocean water and hot rock on Saturn’s moon Enceladus are thought to result in hydrothermal plumes that erupt through the moon’s icy crust. Credit: NASA/JPL-Caltech.
 
Jupiter and Saturn are both gas giants boasting multiple moons. Now, two separate studies have identified another similarity: Each appears to have a moon with hidden underground oceans.
 
Jupiter’s moon Ganymede is the largest moon in the solar system and is the only moon with its own magnetic field, which frequently sparks glowing aurorae encircling the moon’s north and south poles. Ganymede’s close proximity to Jupiter means that the moon is also embedded within Jupiter’s magnetic field, and when Jupiter’s magnetic field shifts, the aurorae on Ganymede do too, rocking back and forth.
 
Using the Hubble space telescope to observe ultraviolet light emanating from the aurorae, scientists found, however, that the aurorae weren’t moving as much as expected. The team, led by Joachim Saur of the University of Cologne in Germany, determined that a large ocean of electrically conductive saltwater beneath Ganymede’s crust is likely counteracting the influence of Jupiter’s magnetic field on the aurora. Specifically, the researchers reported in the Journal of Geophysical Research: Space Physics, Ganymede’s ocean is probably about 100 kilometers deep — roughly 10 times thicker than Earth’s oceans — and buried under a 150-kilometer-thick crust of ice. They also noted that the new method using Hubble to track the movement of aurorae could be useful to look for evidence of water on distant planets.
 
In addition to Ganymede, Saturn’s satellite, Enceladus, may also have a vast reservoir of underground water. New gravitational field measurements, reported in Nature, suggest a body of water about 10 kilometers thick, under a layer of ice between 30 and 40 kilometers thick.
 
Observations by the Cassini spacecraft of Saturn’s E-ring — the second most outer ring, which is thought to be produced from debris from Enceladus — revealed a wealth of silicon-rich dust particles. The size and composition of the particles suggest that they may be produced by high-temperature reactions on the moon’s ocean floor. The particles must then make their way up through the ice to join the giant plume of gas, ice and dust that erupts from Enceladus’ south pole to form the E-ring.
 
The finding, reported by Hsiang-Wen Hsu of the University of Colorado at Boulder and colleagues, is the first evidence of ongoing hydrothermal activity in our solar system other than on Earth.
 

Mary Caperton Morton

Mary Caperton Morton

Morton is a freelance writer and photographer (and EARTH roving correspondent) who makes her home on the back roads of North America, living and working out of a tiny solar-powered Teardrop camper. Follow her travels at www.theblondecoyote.com.

Sunday, August 2, 2015 - 06:00

Did you know ...

EARTH only uses professional science journalists and scientists to author our content?  In this era of fake news and click-bait, EARTH offers factual and researched journalism. But EARTH is a non-profit magazine, and at least 10 times more people read EARTH than pay for it. As advertising revenues across the media decline, we need your help to ensure that we can continue bringing you the reliable and well-written coverage of earth science you know and love. Our goal is not only to inform our readers, but to inform decision makers across the economic and political spectrum about the science of our planet. So, we need your help. By becoming a subscriber or making a tax-deductible contribution to support EARTH, you can fund our writers and help make sure the world knows about our planet.

Make a contribution

Subscribe

 

Twitter icon
Facebook icon
Google icon
LinkedIn icon