Twitter icon
Facebook icon
RSS icon
YouTube icon

Community college at sea: Research experiences for community college students build the STEM pipeline

Maya Tolstoy of the Lamont-Doherty Earth Observatory, chief scientist of the 2011 CCatSea cruise, sits on an ocean-bottom seismometer as it is prepared for deployment on the R/V Wecoma.

Credit: 

Courtesy of Dean Livelybrooks

CCatSea participant Michelle Richter with the R/V Wecoma.

Credit: 

courtesy of Dean Livelybrooks

“Team Bubbles”: (left to right) Oregon State University graduate student Mark Williams, CCatSea participant Eric Head and intern Paige Czoski, an undergraduate at New Mexico Tech, appear to still be awake after spending all night peering at acoustic surveys of a methane vent site.

Credit: 

courtesy of Dean Livelybrooks

The instrument package deployed under a Lamont ocean-bottom seismometer is supported by three feet and self-levels on the ocean floor.

Credit: 

Courtesy of Dean Livelybrooks

The crew prepares a Lamont ocean-bottom seismometer to deploy from the R/V Wecoma. At the end of the line is the release mechanism, which responds to acoustic signals from the ship.

Credit: 

Courtesy of Dean Livelybrooks

The scientific crew of Leg 3 of the Cascadia Initiative sailed aboard the R/V New Horizon last summer. Erik Bengston is front row second from left, Erika Jefferson is rear row left and the author is middle row third from right. 

Credit: 

courtesy of Dean Livelybrooks

It’s 3 a.m. We’re on the starboard fantail of the R/V New Horizon in rough seas. Our job is to recover an ocean-bottom seismometer that has been lying in 160 meters of water off the west coast of Vancouver Island, where it has been recording seismic signals and long-period pressure trends for the past year. The yellow seismometer, having received a remote command via sonic signal to release its anchor and rise to the surface, floats low in dark, roiling seas. One moment it is five meters below the deck, the next it is even with the railing. Connecting lines to it so we can winch it onto the deck is problematic. Erik Bengston and Erika Jefferson, students at Portland Community College and Mt. Hood Community College, respectively, stand ready at the railing, hook lines in hand. They are experiencing what earth scientists do for a living as part of the Cascadia Initiative’s CCatSea program.
 
CCatSea places Oregon community college students aboard oceanographic research cruises, such as the R/V New Horizon, operated by the Scripps Institution of Oceanography, with the goal of giving these students a potentially life-changing experience to share with their peers on their home community college campuses.
 
With funding from the National Science Foundation (NSF), CCatSea grew out of a previous community college-university collaboration: the NSF-funded Undergraduate Catalytic Outreach and Research Experience (UCORE) program. During the five years of UCORE, groups of three to six students each from six Oregon community colleges spent 10 summer weeks on the University of Oregon campus, working on projects alongside faculty and graduate students in chemistry, geological sciences and physics research groups (see sidebar page 43). Participants returned to their home community college campuses and tutored, gave talks, helped lead teaching labs, and recruited other students into science, technology, engineering and math (STEM) career pathways.
 
UCORE participants were five times more likely to transfer to a four-year university than were other community college students. In addition, the three participating University of Oregon science departments saw a 10 percent increase in undergraduate enrollment on average, mostly attributable to interest from community college transfer students, including those influenced by UCORE participants on community college campuses. UCORE thus worked toward the goals of the NSF STEM Talent Enhancement Program (or STEP) to increase the number and diversity of STEM majors graduating from U.S. colleges and universities. CCatSea picks up where UCORE left off in 2012, further building upon the earlier program.
 

The Cascadia Initiative

CCatSea involves students in fieldwork and Cascadia-oriented research as part of the Cascadia Initiative, a multidisciplinary, multiorganizational collaborative experiment involving the acquisition of seismic and pressure data on- and offshore in the Pacific Northwest. “Cascadia” spans an ocean spreading center; the Juan de Fuca, Gorda and related oceanic plates; the subduction zone where they plunge beneath the North American Plate; as well as various coastal mountain ranges and valleys and the arc of volcanoes known as the Cascade Range. It is a perfect natural laboratory for earth scientists.
 
Cascadia is also the site of very large earthquakes — called megathrust events — that occur when the Juan de Fuca Plate slips below North America along a locked zone of the massive offshore fault running from Northern California to Vancouver Island. The recent deadly earthquakes and accompanying tsunamis near Sumatra (in 2004) and Japan (in 2011) were megathrust events that occurred in similar geologic settings.
 
Between these events, Earth’s crust deforms, produces smaller earthquakes along local faults and even slips over subducted oceanic plates below locked zones. The latter phenomenon gives rise to poorly understood, semi-periodic “slow-slip earthquakes” that occur over several days and are usually not felt. Detecting the planet’s underwater creaks and groans is best accomplished using ocean-bottom seismometers and pressure gauges. A diverse team of scientists, engineers, ship’s crew and support staff are charged with deploying, recovering and making sense of the data. Ships from four institutions, five types of instruments from three institutions, and remotely operated vehicles (ROVs) support this effort.
 
The CCatSea students also support this effort. For example, they assist with cruise tasks such as running conductivity-temperature-depth profiles at seismometer sites, helping deploy and recover instruments, and, as members of “Team Bubbles,” mapping methane seep activity using hydrophones.
 
In July 2011, Eric Head of Mt. Hood Community College in Portland and Michelle Richter of Umpqua Community College near Roseburg went to sea on the R/V Wecoma, operated by Oregon State University out of Newport, Ore. The task was to deploy an array of ocean-bottom seismometers, designed and built by Lamont-Doherty Earth Observatory scientists and engineers whom we accompanied on the cruise.
 
Similar to the Scripps seismometers we recovered on the R/V New Horizon, the Lamont ocean-bottom seismometers are designed to operate in relatively shallow water (depths as shallow as 75 meters) and to resist snagging on fishing trawl nets. At the end of its planned four-year duration, which started in 2011, the Cascadia Initiative leadership team (CIET) will have overseen the deployment of a mixed array of 71 instruments intended to monitor first the northern half of Cascadia and then the southern half. Instruments deployed one summer spend the next year on the ocean floor, logging seismic signals. The following summer, these instruments are recovered along with their data; then they are refurbished and deployed again elsewhere during late summer cruises.
 

Spotlight on Research Cruises 

During the exciting seven-day cruise in 2012 on the New Horizon, Erik and Erika grew to appreciate the team effort needed to deploy electronic equipment underwater as the cruise progressed. They saw firsthand how everyone worked together.
 
Captain Ian Lawrence or Mates Rene Buck or Jack Purdy piloted the New Horizon to a site. There, marine engineer Martin Rapa — who had designed the bright yellow Teflon-coated Scripps Abalone seismometers — or engineers Paul Georgief and Ray Klein communicated with the ocean-bottom seismometers on the seafloor via acoustic signals, giving them commands such as “wake up.”
 
Aboard the ship, the tension rose palpably during every recovery, as we all listened closely for the chirps sent back by the instrument in response. The number of these chirps would tell us whether the instrument was still alive, if it had awakened as instructed, and if it had dropped its ballast and was ascending to the surface.
 
Back on the bridge, the captain or a mate, sometimes with help from an assistant boatswain, monitored the radio direction finder for signals from the device. The recovery crew, led by NOAA cruise veteran and marine tech Matt Fowler and Scripps marine tech Josh Manger, pulled on rain gear, boots and safety gear before going out on deck, using the Nautilus crane to winch the seismometer onto the deck. The data from the instrument were downloaded to computers once on board. Chief scientist Bob Dziak then made the important decisions as to where to go next.
 
It took several weeks for the data to be processed, including correcting for clock drift, determining the final orientation of the three components of the seismometer after deployment, and removing extraneous signals from, say, an octopus that decided the yellow Scripps Abalone made a fine shelter.
 
One message that Erik and Erika took back to their home community colleges is that science — marine geoscience in this instance — is an enterprise requiring many hands, pairs of eyes and skill sets. The image of the lone scientist with a white lab coat and crazy hair just doesn’t fit.
 
This summer, CCatSea-ers, who live on the University of Oregon campus for the summer while preparing for and finishing up after their cruises, will accompany scientists and crew on the Woods Hole Oceanographic Institution’s R/V Atlantis, equipped to use the ROV Jason to connect lines and recover Lamont ocean-bottom seismometers off Cape Mendocino, Calif.
 
And, like the UCORE and previous CCatSea participants before them, when the students return from their research cruises, they will produce educational and outreach videos telling stories about Cascadia science, and they will be supported at their home institutions as they help spread the word about geoscience and other STEM careers.
 

Catalyzing Interest in Science Careers

Through the UCORE and CCatSea programs, 134 community college students have gained valuable experience in physical science research. They have also demonstrated that community college students can make solid contributions to research.
 
One of the primary reasons that community college students can be such assets is their strong work ethic; they typically hold several jobs during their studies and come to programs such as UCORE and CCatSea ready to work hard. Because of this, University of Oregon scientists have been enthusiastic about developing CCatSea and UCORE projects and working with participants.
 
Through summer research and ensuing “STEM career catalytic outreach” (as NSF describes it) on community college campuses, UCORE and CCatSea participants have developed skills to participate in scientific discourse, promoting lively discussions of science in order to process their own experiences and to relate them to others. This bonding around science has meant that participants, upon return to their home campuses, effected changes in perception of science and engineering departments among other students and faculty on those campuses.
 
Based on interviews with students and faculty at UCORE participating community colleges, my colleague Clare Strawn (an Oregon-based program evaluator for the International Society for Technology in Education in Washington, D.C.) and I have tracked this effect. Beyond cementing participants’ pursuit of four-year STEM degrees, community college faculty have told us, for example, that students see the UCORE and CCatSea students “greet [us professors] by name, and that really creates a positive and welcoming sense and reduces some of the ‘science is scary’ feeling.”
 
This speaks to an important point for the design of future STEM career outreach programs: Considerable time is spent developing programs to maximize impact on participants, but frequently much less thought is given to how to leverage their experiences to positively affect nonparticipating students, STEM faculty, and the institutions in which they study and work. By working with “critical-mass-sized” groups of students from specific institutions, including community colleges, outreach programs can do more than change the lives of participants, they can increase STEM pipeline flow upstream and down.
 

Spotlight on UCORE projects

UCORE fellows and University of Oregon faculty, students and staff attend the 2010 end-of-summer UCORE poster session.

Credit: 

Courtesy of Dean Livelybrooks

Research sponsor professor Josh Roering of the University of Oregon and 2010 UCORE fellow Beckah Pickard with her poster presentation on her research characterizing the geomorphology of the Oregon Coast Range.

Credit: 

Courtesy of Dean Livelybrooks

Some UCORE students have studied Mount St. Helens, which began erupting a new lava dome in 2004. The volcano is seen here in October 2004 from the Johnston Ridge Observatory. 

Credit: 

Gene Iwatsubo, U.S. Geological Survey

2010 UCORE fellow Brittany (Croes) Symes with her poster about her project on episodic tremor and slip.

Credit: 

Courtesy of Dean Livelybrooks

2010 UCORE fellow Jamee Burh with her poster about her project on episodic tremor and slip.

Credit: 

Courtesy of Dean Livelybrooks

Symes (on ladder) and Burh (foreground) and former University of Oregon physics student Tamela Maciel install a tide gauge near Aberdeen, Wash., as part of an array to measure small water-level changes associated with episodic tremor and slip.

Credit: 

Courtesy of Dean Livelybrooks

The National Science Foundation-funded Undergraduate Catalytic Outreach and Research Experience (UCORE) program ran from 2007 to 2012 and involved 132 students from six different community colleges in Oregon. During the five years of the UCORE program, groups of three to six community college students from each campus spent 10 weeks in the summer on the University of Oregon campus, working on projects alongside graduate students and faculty in chemistry, geological sciences and physics research groups. Listed below are some of the projects in which the students were involved.

Geomorphology of the Oregon Coast Range

UCORE participants Beckah Pickard and Tim Stimpson, undergraduates at the Rock Creek campus of Portland Community College (PCC) and Umpqua Community College (UCC) near Roseburg, Ore., respectively, spent the summer of 2010 working in University of Oregon geomorphologist Josh Roering’s research group, helping graduate student Jill Marshall characterize the geomorphology of the Oregon Coast Range, which overlies the Cascadia Subduction Zone.

Beckah and Tim dug holes and trenches where they measured the depth to bedrock, characterized soil-forming processes as biotic or abiotic, and measured the diameter of tree stumps in study areas. The students’ research contributed to an improved understanding of how vegetation and ecosystem dynamics contribute to erosion and landforms, which, in turn, affect forest fire trends, marine sedimentation and fish genetics, among other things.

Arsenic Contamination of water Wells

University of Oregon biogeochemist Qusheng Jin is interested in how bacteria found in groundwater convert insoluble, relatively benign sulfur and arsenic found in Cascadian volcanic rocks into more hazardous mobile forms that contaminate well water. He is also interested in producing generalized models of how microbial diversity impacts biogeochemistry in specific environments. Undergraduates Victor Benavides Montes and Jesse Klinger — of the Sylvania and Rock Creek campuses of PCC, respectively — assisted in the summer of 2010 with software tools such as the Geochemist’s Workbench.

Under Jin’s guidance, Victor and Jesse developed mathematical models for how organisms and nutrients would evolve in a hypothetical test cube, testing how microbial diversity, particularly among sulfate-reducing bacteria, impacts ecosystem function and environmental alteration.

“I thought the science [that university scientists] worked on was way too far-fetched for any of it to be put into laymen’s terms or for me to understand,” Victor says. “But after working with Qusheng Jin and seeing all my other UCORE fellows’ labs, I noticed that these ideas can be very attainable. We are all curious people looking for fundamental and pretty simple answers.”

The summer before Victor and Jesse’s project, PCC-Sylvania student Matthew Gibson spent his UCORE summer helping Jin collect water samples in wells in Lane and Douglas counties in Oregon, testing for arsenic contamination and relating it to how bacteria in aquifers process arsenic from fixed to more mobile (and thus hazardous) chemical forms.

“My UCORE experience gave me some insight into the world of groundwater hydrology, which I wouldn’t have otherwise received,” Matthew says. He plans to pursue certification as a registered geologist after finishing his bachelor’s in geology with a GIS and computer science concentration at Portland State University (PSU) this year. Victor’s career trajectory was also strongly influenced by participation in UCORE, he says. “I truly believe without the UCORE credentials, this domino effect — an REU [a National Science Foundation Research Experience for Undergraduates program], research in a PSU lab, and impending completion of a bachelor’s — would’ve never happened.”

Dome Building on Mount St. Helens

Following the catastrophic eruption of Mount St. Helens in 1980, the volcano’s dome began building again in 2004, occasionally erupting small volumes of dacite that built substantial, rocky spines in the crater. Scientists are interested in how dome-building eruptions might relate to episodic “drumbeat” earthquakes detected below the mountain.

In 2009, UCORE participant Naomi Meacham, then a student at UCC, worked with University of Oregon geophysicist Alan Rempel’s research team to help analyze stereographic digital images documenting dome growth within the crater. Digital elevation models were developed and analyzed to quantify dome growth, characterize associated faulting and compare fault slip with seismic records of drumbeat earthquakes.

Episodic Tremor and Slip in Cascadia

University of Oregon researchers Ray Weldon, David Schmidt and I (Dean Livelybrooks) study “slow earthquakes,” known as episodic tremor and slip, in Cascadia. In particular, we’re interested in how these earthquakes transfer stress seaward to a zone that’s locked on the Cascadia Fault, and how that stress, in turn, results in surface deformation on the coast and at the “epicenters” of episodic tremor and slip.

Over two UCORE field seasons, community college students, including Stacy Smith (2008, PCC-Sylvania, now a graduate of PSU with a degree in geology), Codi Quimby (2009, Mt. Hood Community College, now double-majoring in geology and anthropology at PSU), Jamee Buhr (2010, formerly at Mt. Hood Community College, now a geology major at PSU) and Brittany (Croes) Symes (2010, PCC-Sylvania) helped install and run a network of tide gauges along coastal rivers, the Puget Sound and the Olympic Peninsula in Washington. Careful processing of the resulting data revealed small amounts of uplift associated with active coastal deformation, as well as episodic tremor and slip events farther inland.

Installing tide gauges can be challenging. Jamee and Brittany recall wading into deep, cold water at 6 a.m. on a lonely beach along the Strait of Juan de Fuca to see if they could install a gauge on an abandoned piling once used to tie up timber barges. Cold water pouring in over their chest waders forced them to retreat back to the beach. Another time, after a particularly difficult installation, Jamee ended up swimming in the ocean, holding an unprotected video camera above her head to record and calibrate water level on a gauge.

“I so enjoyed and was amazed by my opportunity to participate in the UCORE research program that I couldn’t stop talking about it,” Jamee says. “I always carry my great UCORE experience with me and wow my fellow classmates at Portland State with the knowledge and advantages I gained through participating in the program.”

It is stories like these that the students carried back to their community college peers to demonstrate the fun and excitement of scientific research.

 

DL
Sunday, March 31, 2013 - 13:30
Dean Livelybrooks

Livelybrooks is a tenured senior instructor in the Department of Physics at the University of Oregon. His research interests include science education and outreach, magnetotellurics and dynamic margin model constraints. He is a geophysicist serving as the Cascadia Initiative Expedition Team Education and Outreach specialist. More information can be found at http://cascadia.uoregon.edu/CIET/ccsea.

Sunday, March 31, 2013 - 16:00